
INTERNATIONAL JOURNAL OF MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

IJMTARC – VOLUME – IV – ISSUE - 16 - DEC 2016 ISSN: 2320-1363

 1

The Encrypted Data Over the Cloud In A Secure And Dynamic

Multi-Keyword Search Ranking Scheme

MS.C.ANUSHA MR.N.MANEIAH

Abstract—Due to the increasing popularity

of cloud computing, more and more data

owners are motivated to outsource their data

to cloud servers for great convenience and

reduced cost in data management. However,

sensitive data should be encrypted before

outsourcing for privacy requirements, which

obsoletes data utilization like keyword-

based document retrieval. In this paper, we

present a secure multi-keyword ranked

search scheme over encrypted cloud data,

which simultaneously supports dynamic

update operations like deletion and insertion

of documents. Specifically, the vector space

model and the widely-used TF×IDF model

are combined in the index construction and

query generation. We construct a special

tree-based index structure and propose a

“Greedy Depth-first Search” algorithm to

provideefficient multi-keyword ranked

search. The secure kNN algorithm is utilized

to encrypt the index and query vectors, and

meanwhile ensure accurate relevance score

calculation between encrypted index and

query vectors. In order to resist statistical

attacks, phantom terms are added to the

index vector for blinding search results .

1 INTRODUCTION

 Cloud computing has been considered as a

new model of enterprise IT infrastructure,

which can organize huge resource of

computing, storage and applications, and

enable users to enjoy ubiquitous, convenient

and on-demand network access to a shared

pool of configurable computing resources

with great efficiency and minimal economic

overhead [1]. Attracted by these appealing

features, both individuals and enterprises are

motivated to outsource their data to the

cloud, instead of purchasing software and

hardware to manage the data themselves.

Despite of the various advantages of cloud

services, outsourcing sensitive information

(such as e-mails, personal health records,

company finance data, government

documents, etc.) to remote servers brings

privacy concerns. The cloud service

INTERNATIONAL JOURNAL OF MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

IJMTARC – VOLUME – IV – ISSUE - 16 - DEC 2016 ISSN: 2320-1363

 2

providers (CSPs) that keep the data for users

may access users’ sensitive information

without authorization. A general approach to

protect the data confidentiality is to encrypt

the data before outsourcing [2]. However,

this will cause a huge cost in terms of data

usability. For example, the existing

techniques on keyword-based information

retrieval, which

• Zhihua Xia, Xinhui Wang, and Xingming

Sun are with the Jiangsu Engineering Center

of Network Monitoring, Jiangsu

Collaborative Innovation Center on

Atmospheric Environment and Equipment

Technology, and School of Computer and

Software, Nanjing University of Information

Science & Technology, Nanjing, China. E-

mail: xia zhihua, wxh nuist,

sunnudt@163.com. • Qian Wang is with the

the School of Computer, Wuhan University,

Wuhan, China. E-mail:

qianwang@whu.edu.cn.are widely used on

the plaintext data, cannot be directly applied

on the encrypted data. Downloading all the

data from the cloud and decrypt locally is

obviously impractical. In order to address

the above problem, researchers have

designed some general-purpose solutions

with fully-homomorphic encryption [3] or

oblivious RAMs [4]. However, these

methods are not practical due to their high

computational overhead for both the cloud

sever and user. On the contrary, more

practical specialpurpose solutions, such as

searchable encryption (SE) schemes have

made specific contributions in terms of

efficiency, functionality and security.

Searchable encryption schemes enable the

client to store the encrypted data to the cloud

and execute keyword search over ciphertext

domain. So far, abundant works have been

proposed under different threat models to

achieve various search functionality, such as

single keyword search, similarity search,

multi-keyword boolean search, ranked

search, multi-keyword ranked search, etc.

Among them, multikeyword ranked search

achieves more and more attention for its

practical applicability. Recently, some

dynamic schemes have been proposed to

support inserting and deleting operations on

document collection. These are significant

works as it is highly possible that the data

owners need to update their data on the

INTERNATIONAL JOURNAL OF MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

IJMTARC – VOLUME – IV – ISSUE - 16 - DEC 2016 ISSN: 2320-1363

 3

cloud server. But few of the dynamic

schemes support efficient multikeyword

ranked search. This paper proposes a secure

tree-based search scheme over the encrypted

cloud data, which supports multikeyword

ranked search and dynamic operation on the

document collection. Specifically, the vector

space model andthewidely-

used“termfrequency(TF)×inversedocument

frequency (IDF)” model are combined in the

index construction and query generation to

provide multikey word ranked search. In

order to obtain high search efficiency, we

construct a tree-based index structure and

propose a “Greedy Depth-first Search”

algorithm based on this index tree. Due to

the special structure of our tree-based index,

the proposed search scheme can flexibly

achieve sub-linear search time and deal with

the deletion and insertion of documents. The

secure kNN algorithm is utilized to encrypt

the index and query vectors, and meanwhile

ensure accurate relevance score calculation

between encrypted index and query vectors.

To resist different attacks in different threat

models, we construct two secure search

schemes: the basic dynamic multi-keyword

ranked search (BDMRS) scheme in the

known ciphertext model, and the enhanced

dynamic multi-keyword ranked search

(EDMRS) scheme in the known background

model. Our contributions are summarized as

follows: 1) We design a searchable

encryption scheme that supports both the

accurate multi-keyword ranked search and

flexible dynamic operation on document

collection.

2) Due to the special structure of our tree-

based index, the search complexity of the

proposed scheme is fundamentally

kepttologarithmic .Andinpractice, the

proposed scheme can achieve higher search

efficiency by executing our “Greedy Depth-

first Search” algorithm. Moreover, parallel

search can be flexibly performed to further

reduce the time cost of search process. The

reminder of this paper is organized as

follows. Related work is discussed in

Section 2, and Section 3 gives a brief

introduction to the system model, threat

model, the design goals, and the

preliminaries. Section 4 describes the

schemes in detail. Section 5 presents the

INTERNATIONAL JOURNAL OF MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

IJMTARC – VOLUME – IV – ISSUE - 16 - DEC 2016 ISSN: 2320-1363

 4

experiments and performance analysis. And

Section 6 covers the conclusion.

2 RELATED WORK

 Searchable encryption schemes

enable the clients to store the encrypted data

to the cloud and execute keyword search

over ciphertext domain. Due to different

cryptography primitives, searchable

encryption schemes can be constructed

using public key based cryptography or

symmetric key based cryptography Song et

al. proposed the first symmetric searchable

encryption (SSE) scheme, and the search

time of their scheme is linear to the size of

the data collection. Goh proposed formal

security definitions for SSE and designed a

scheme based on Bloom filter. The search

time of Goh’s scheme is O(n), where n is the

cardinality of the document collection.

Curtmola et al. [10] proposed two schemes

(SSE-1 and SSE-2) which achieve the

optimal search time. Their SSE-1 scheme is

secure against chosen-keyword attacks

(CKA1) and SSE-2 is secure against

adaptive chosen-keyword attacks (CKA2).

These early works are single keyword

boolean search schemes, which are very

simple in terms of functionality. Afterward,

abundant works have been proposed under

different threat models to achieve various

search functionality, such as single keyword

search, similarity search multi-keyword

boolean search ranked search and multi-

keyword ranked search etc. Multi-keyword

boolean search allows the users to input

multiple query keywords to request suitable

documents. Among these works, conjunctive

keyword search schemes only return the

documents that contain all of the query

keywords. Disjunctive keyword search

schemes return all of the documents that

contain a subset of the query keywords.

Predicate search schemes are proposed to

support both conjunctive and disjunctive

search. All these multikeyword search

schemes retrieve search results based on the

existence of keywords, which cannot

provide acceptable result ranking

functionality. Ranked search can enable

quick search of the most relevant data.

Sending back only the top-k most relevant

documentscaneffectivelydecreasenetworktra

INTERNATIONAL JOURNAL OF MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

IJMTARC – VOLUME – IV – ISSUE - 16 - DEC 2016 ISSN: 2320-1363

 5

ffic.Some early works have realized the

ranked search using order-preserving

techniques, but they are designed only for

single keyword search. Cao et al realized the

first privacy-preserving multi-keyword

ranked search scheme, in which documents

and queries are represented as vectors of

dictionary size. With the “coordinate

matching”, the documents are ranked

according to the number of matched query

keywords. However, Cao et al.’s scheme

does not consider the importance of the

different keywords, and thus is not accurate

enough. In addition, the search efficiency of

the scheme is linear with the cardinality of

document collection. Sun et al. presented a

secure multi-keyword search scheme that

supports similarity-based ranking. The

authors constructed a searchable index tree

based on vector space model and adopted

cosine measure together with TF×IDF to

provide ranking results. Sun et al.’s search

algorithm achieves better-than-linear search

efficiency but results in precision loss.

¨Orencik et al] proposed a secure multi-

keyword search method which utilized local

sensitive hash (LSH) functions to cluster the

similar documents. The LSH algorithm is

suitable for similar search but cannot

provide exact ranking. In Zhang et al.

proposed a scheme to deal with secure

multi-keywordrankedsearchinamulti-

ownermodel.In this scheme, different data

owners use different secret keys to encrypt

their documents and keywords while

authorized data users can query without

knowing keys of these different data owners.

The authors proposed an “Additive Order

Preserving Function” to retrieve the most

relevant search results. However, these

works don’t support dynamic operations.

Practically, the data owner may need to

update the document collection after he

upload the collection to the cloud server.

Thus, the SE schemes are expected to

support the insertion and deletion of the

documents. There are also several dynamic

searchable encryption schemes. In the work

of Song et al. [7], the each document is

considered as a sequence of fixed length

words, and is individually indexed.

3 PROBLEM FORMULATION

INTERNATIONAL JOURNAL OF MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

IJMTARC – VOLUME – IV – ISSUE - 16 - DEC 2016 ISSN: 2320-1363

 6

 3.1 Notations and Preliminaries

 • W – The dictionary, namely, the set of

keywords, denoted as W = {w1,w2,...,wm}.

• m – The total number of keywords in W. •

Wq – The subset of W, representing the

keywords in the query. • F – The plaintext

document collection, denoted as a collection

of n documents F = {f1,f2,...,fn}. Each

document f in the collection can be

considered as a sequence of keywords. • n –

The total number of documents in F. • C –

The encrypted document collection stored in

the cloud server, denoted as C =

{c1,c2,...,cn}. • T – The unencrypted form

of index tree for the whole document

collection F. • I – The searchable encrypted

tree index generated from T. • Q – The

query vector for keyword set Wq. • TD –

The encrypted form of Q, which is named as

trapdoor for the search request. • Du – The

index vector stored in tree node u whose

dimension equals to the cardinality of the

dictionary W. Note that the node u can be

either a leaf node or an internal node of the

tree. • Iu – The encrypted form of Du.

Vector Space Model and Relevance Score

Function. Vector space model along with

TF×IDF rule is widely used in plaintext

information retrieval, which efficiently

supports ranked multi-keyword search [34].

Here, the term frequency (TF) is the number

of times a given term (keyword) appears

within a document, and the inverse

document frequency (IDF) is obtained

through dividing the cardinality of document

collection by the number of documents

containing the keyword. In the vector space

model, each document is denoted by a

vector, whose elements are the normalized

TF values of keywords in this document.

Each query is also denoted as a vector Q,

whose elements are the normalized IDF

values of query keywords in the document

collection. Naturally, the lengths of both the

TF vector and the IDF vector are equal to

the total number of keywords, and the dot

product of the TF vector Du and the IDF

vector Q can be calculated to quantify the

relevance between the query and

corresponding document. Following are the

notations used in our relevance evaluation

function: • Nf,wi – The number of keyword

wi in document f. • N – The total number of

documents. • Nwi – The number of

INTERNATIONAL JOURNAL OF MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

IJMTARC – VOLUME – IV – ISSUE - 16 - DEC 2016 ISSN: 2320-1363

 7

documents that contain keyword wi. •

TF′f,wi – The TF value of wi in document f.

• IDF′wi – The IDF value of wi in document

collection. • TFu,wi – The normalized TF

value of keyword wi stored in index vector

Du. • IDFwi – The normalized IDF value of

keyword wi in document collection. The

relevance evaluation function is defined as:

RScore(Du,Q) = Du ·Q = ∑ wi∈Wq TFu,wi

×IDFwi. (1) If u is an internal node of the

tree, TFu,wi is calculated from index vectors

in the child nodes of u. If the u is a leaf

node, TFu,wi is calculated as:

3.2 The System and Threat Models

 The system model in this paper involves

three different entities: data owner, data user

and cloud server, as illustrated in Fig. 1.

Data owner has a collection of documents F

= {f1,f2,...,fn} that he wants to outsource to

the cloud server in encrypted form while

still keeping the capability to search on them

for effective utilization. In our scheme, the

data owner firstly builds a secure searchable

tree index I from document collection F, and

then generates an encrypted document

collection C for F. Afterwards, the data

owner outsources the encrypted collection C

and the secure index I to the cloud server,

and securely distributes the key information

of trapdoor generation (including keyword

IDF values) and document decryption to the

authorized data users. Besides, the data

owner is responsible for the update

operation of his documents stored in the

cloud server. While updating, the data owner

generates the update information locally and

sends it to the server. Data users are

authorized ones to access the documents of

data owner. With t query keywords, the

authorized user can generate a trapdoor TD

according to search control mechanisms to

fetch k encrypted documents from cloud

server. Then, the data user can decrypt the

documents with the shared secret key.

Cloudserver stores the encrypted document

collection C and the encrypted searchable

tree index I for data owner. Upon receiving

the trapdoor TD from the data user, the

cloud server executes search over the index

tree I,and finally returns the corresponding

collection of topk ranked encrypted

documents. Besides, upon receiving the

update information from the data owner, the

INTERNATIONAL JOURNAL OF MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

IJMTARC – VOLUME – IV – ISSUE - 16 - DEC 2016 ISSN: 2320-1363

 8

server needs to update the index I and

document collection C according to the

received information. The cloud server in

the proposed scheme is considered as

“honest-but-curious”, which is employed by

lots of works on secure cloud data search .

3.3 Design Goals

To enable secure, efficient, accurate and

dynamic multikeyword ranked

searchoverout sourced encrypted cloud data

under the above models, our system has the

following design goals. Dynamic: The

proposed scheme is designed to provide not

only multi-keyword query and accurate

result ranking, but also dynamic update on

document collections. Search Efficiency:

The scheme aims to achieve sublinear search

efficiency by exploring a special tree-based

index and an efficient search algorithm.

Privacy-preserving: The scheme is designed

to prevent the cloud server from learning

additional information about the document

collection, the index tree, and the query. The

specific privacy requirements are

summarized as follows, 1) Index

Confidentiality and Query Confidentiality:

The underlying plaintext information,

including keywords in the index and query,

TF values of keywords stored in the index,

and IDF values of query keywords, should

be protected from cloud server; 2) Trapdoor

Unlinkability: The cloud server should not

be able to determine whether two encrypted

queries (trapdoors) are generated from the

same search request; 3) Keyword Privacy:

The cloud server could not identify the

specific keyword in query, index or

document collection by analyzing the

statistical information like term frequency.

Note that our proposed scheme is not

designed to protect access pattern, i.e., the

sequence of returned documents.

4 THE PROPOSED SCHEMES

 In this section, we firstly describe the

unencrypted dynamic multi-keyword ranked

search (UDMRS) scheme which is

constructed on the basis of vector space

model and KBB tree. Based on the UDMRS

scheme, two secure search schemes

(BDMRS and EDMRS schemes) are

constructed against two threat models,

respectively.

INTERNATIONAL JOURNAL OF MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

IJMTARC – VOLUME – IV – ISSUE - 16 - DEC 2016 ISSN: 2320-1363

 9

4.1 Index Construction of UDMRS

Scheme

we have briefly introduced the KBB index

tree structure, which assists us in

introducing the index construction. In the

process of index construction, we first

generate a tree node for each document in

the collection. These nodes are the leaf

nodes of the index tree. Then, the internal

tree nodes are generated based on these leaf

nodes. The formal construction process of

the index is presented in Algorithm 1. An

example of our index tree is shown in Fig. 3.

Note that the index tree T built here is a

plaintext. Following are some notations for

Algorithm 1. Besides, the data structure of

the tree node is defined as

⟨ID,D,Pl,Pr,FID⟩,wheretheuniqueidentityIDf

oreach tree node is generated through the

function GenID(). • CurrentNodeSet – The

set of current processing nodes which have

no parents. If the number of nodes is even,

the cardinality of the set is denoted as 2h(h

∈ Z), else the cardinality is denoted as (2h

 1). • TempNodeSet – The set of the newly

generated nodes. In the index, if Du i = 0

for an internal node u, there is at least one

path from the node u to some leaf, which

indicates a document containing the

keyword wi. In addition, Du[i] always stores

the biggest normalized TF value of wi

among its child nodes. Thus, the possible

largest relevance score of its children can be

easily estimated.

4.2 Search Process of UDMRS Scheme The

search process of the UDMRS scheme is a

recursive procedure upon the tree, named as

“Greedy Depthfirst Search (GDFS)”

algorithm. We construct a result list denoted

as RList, whose element is defined as

⟨RScore,FID⟩. Here, the RScore is the

relevance score of the document fFID to the

query, which is calculated

accordingtoFormula(1).The RList storesthe

k accessed documents with the largest

relevance scores to the query. The elements

of the list are ranked in descending order

according to the RScore, and will be updated

timely during the search process. Following

are some other notations, and the GDFS

algorithm is described in Algorithm 2. •

RScore(Du,Q) – The function to calculate

the relevance score for query vector Q and

index vector Du stored in node u, which is

INTERNATIONAL JOURNAL OF MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

IJMTARC – VOLUME – IV – ISSUE - 16 - DEC 2016 ISSN: 2320-1363

 10

defined in Formula (1). • kthscore – The

smallest relevance score in current RList,

which is initialized as 0. • hchild – The child

node of a tree node with higher relevance

score.

1045-9219 (c) 2015 IEEE. Personal use is

permitted, but republication/redistribution

requires IEEE permission. See

http://www.ieee.org/publications_standards/

publications/rights/index.html for more

information.

This article has been accepted for

publication in a future issue of this journal,

but has not been fully edited. Content may

change prior to final publication. Citation

information: DOI

10.1109/TPDS.2015.2401003, IEEE

Transactions on Parallel and Distributed

Systems

Algorithm 1 BuildIndexTree(F) Input: the

document collection F = {f1,f2,...,fn} with

the identifiers FID = {FID|FID = 1,2,...,n}.

Output: the index tree T 1: for each

document fFID in F do 2: Construct a leaf

node u for fFID, with u.ID = GenID(), u.Pl =

u.Pr = null, u.FID = FID, and D[i] =

TFfFID,wi for i = 1,...,m;— 3: Insert u to

CurrentNodeSet; 4: end for 5: while the

number of nodes in CurrentNodeSet is larger

than 1 do 6: if the number of nodes in

CurrentNodeSet is even, i.e. 2h then 7: for

each pair of nodes u′ and u′′ in

CurrentNodeSet do 8: Generate a parent

node u for u′ and u′′, with u.ID = GenID(),

u.Pl = u′, u.Pr = u′′, u.FID = 0 and D i =

max{u′.D i ,u′′.D i } for each i = 1,...,m; 9:

Insert u to TempNodeSet; 10: end for 11:

else 12: for each pair of nodes u′ and u′′ of

the former (2h−2) nodes in CurrentNodeSet

do13: Generate a parent node u for u′ and

u′′; 14: Insert u to TempNodeSet; 15: end for

16: Create a parent node u1 for the (2h−1)-

th and 2h-th node, and then create a parent

node u for u1 and the (2h + 1)-th node; 17:

Insert u to TempNodeSet; 18: end if 19:

Replace CurrentNodeSet with

TempNodeSet and then clear TempNodeSet;

20: end while 21: return the only node left in

CurrentNodeSet, namely, the root of index

tree T;

Algorithm 2 GDFS(IndexTreeNode u) 1: if

the node u is not a leaf node then 2: if

RScore(Du,Q) > kthscore then 3:

INTERNATIONAL JOURNAL OF MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

IJMTARC – VOLUME – IV – ISSUE - 16 - DEC 2016 ISSN: 2320-1363

 11

GDFS(u.hchild); 4: GDFS(u.lchild); 5: else

6: return 7: end if 8: else 9: if RScore(Du,Q)

> kthscore then 10: Delete the element with

the smallest relevance score from RList; 11:

Insertanewelement⟨RScore(Du,Q),u.FID⟩an

d sort all the elements of RList; 12: end if

13: return 14: end if

• lchild – The child node of a tree node with

lower relevance score.

Sincethepossiblelargestrelevancescoreofdoc

uments rooted by the node u can be

predicted, only a part of the nodes in the tree

are accessed during the search process. Fig.

3 shows an example of search process with

the document collection F = {fi|i = 1,...,6},

cardinality of the dictionary m = 4, and

query vector Q = (0,0.92,0,0.38).

4.3 BDMRS Scheme Based on the

UDMRS scheme

 we construct the basic dynamic multi-

keyword ranked search (BDMRS) scheme

by using the secure kNN algorithm [38]. The

BDMRS scheme is designed to achieve the

goal of privacypreserving in the known

ciphertext model, and the four algorithms

included are described as follows: •

SK←Setup()

Initially,thedataownergeneratesthe secret

key set SK, including 1) a randomly

generated m-bit vector S where m is equal to

the cardinality of dictionary, and 2) two

(m×m) invertible matrices M1 and M2.

Namely, SK = {S,M1,M2}. • I ←

GenIndex(F,SK) First, the unencrypted

index tree T is built on F by using T ←

BuildIndexTree(F). Secondly, the data

ownergeneratestworandomvectors{Du′,Du′′

}forindexvector Du in each node u,

according to the secret vector S.

Specifically, if S i = 0, Du′ i and Du′′ i

will be set equal to Du i ; if S i = 1, Du′ i

and Du′′ i will be set as two random values

whose sum equals to Du[i]. Finally, the

encrypted index tree I is built wherethenode

u storestwoencryptedindexvectors Iu = {MT

1 Du′,MT 2 Du′′}. •

TD←GenTrapdoor(Wq,SK) With keyword

set Wq, the unencrypted query vector Q with

length of m is generated. If wi ∈Wq, Q[i]

stores the normalized IDF value of wi; else

Q[i] is set to 0. Similarly, the query vector Q

is split into two random vectors Q′ and Q′′.

The difference is that if S i = 0, Q′ i and

INTERNATIONAL JOURNAL OF MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

IJMTARC – VOLUME – IV – ISSUE - 16 - DEC 2016 ISSN: 2320-1363

 12

Q′′ i are set to two random values whose

sum equals to Q i ; else Q′ i and Q′′ i are

set as the same as Q[i]. Finally, the

algorithm returns the trapdoor TD = {M−1 1

Q′,M−1 2 Q′′}. • RelevanceScore ←

SRScore(Iu,TD) With the trapdoor TD, the

cloud server computes the relevance score of

node u in the index treeI to the query. Note

that the relevance score calculated from

encrypted vectors is equal to that from

unencrypted vectors as follows: Iu ·TD =

(MT 1 Du′)·(M−1 1 Q′) (MT 2

Du′′)·(M−1 2 Q′′) = (MT 1 Du′)T(M−1 1 Q′)

 (MT 2 Du′′)T(M−1 2 Q′′) = Du′TM1M−1

1 Q′ Du′′TM2M−1 2 Q′′ = Du′·Q′

Du′′·Q′′ = Du ·Q = RScore(Du,Q) (6)

Security analysis. We analyze the BDMRS

scheme according to the three predefined

privacy requirements in the design goals: 1)

Index Confidentiality and Query

Confidentiality: In the proposed BDMRS

scheme, Iu and TD are obfuscated vectors,

which means the cloud server cannot infer

the original vectors Du and Q without the

secret key set SK. The secret keys M1 and

M2 are Gaussian random matrices.

According to [38], the attacker (cloud

server) of COA cannot calculate the

matrices merely with ciphertext. Thus, the

BDMRS scheme is resilient against

ciphertext-only attack (COA) and the index

confidentiality and the query confidentiality

are well protected. 2) Query Unlinkability:

The trapdoor of query vector is generated

from a random splitting operation, which

means that the same search requests will be

transformed into different query trapdoors,

and thus the query unlinkability is protected.

However, the cloud server is able to link the

same search requests according to the same

visited path and the same relevance scores.

3) Keyword Privacy: In this scheme, the

confidentiality of the index and query are

well protected that the

originalvectorsarekeptfromthecloudserver.A

nd the search process merely introduces

inner product computing of encrypted

vectors, which leaks no information about

any specific keyword. Thus, the keyword

privacy is protected in the known ciphertext

model. But in the known background model,

the cloud server is supposed to have more

knowledge, such as the term frequency

statistics of keywords. This statistic

INTERNATIONAL JOURNAL OF MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

IJMTARC – VOLUME – IV – ISSUE - 16 - DEC 2016 ISSN: 2320-1363

 13

information can be visualized as a TF

distribution histogram which reveals how

many documents are there for every TF

value of a specific keyword in the document

collection. Then, due to the specificity of the

TF distribution histogram, like the graph

slope and value range, the cloud server

could conduct TF statistical attack to

deduce/identify .In the worst case, when

there is only one keyword in the query

vector, i.e. the normalized IDF value for the

keyword is 1, the final relevance score

distribution is exactly the normalized TF

distribution of this keyword, which is

directly exposed to cloud server. Therefore,

the BDMRS scheme cannot resist TF

statistical attack in the known background

model.

4.4 EDMRS Scheme

The security analysis above shows that the

BDMRS scheme can protect the Index

Confidentiality and Query Confidentiality in

the known ciphertext model. However, the

cloud server is able to link the same search

requests by tracking path of visited nodes. In

addition, in the known background model, it

is possible for the cloud server to identify a

keyword as the normalized TF distribution

of the keyword can be exactly obtained from

the final calculated relevance scores. The

primary cause is that the relevance score

calculated from Iu and TD is exactly equal

to that from Du and Q. A heuristic method

to further improve the security is to break

such exact equality. Thus, we can introduce

some tunable randomness to disturb the

relevance score calculation. In addition, to

suit different users’ preferences for higher

accurate ranked results or better protected

keyword privacy, the randomness are set

adjustable.

4.5 Dynamic Update Operation of DMRS

After insertion or deletion of a document,

we need to update synchronously the index.

Since the index of DMRS scheme is

designed as a balanced binary tree, the

dynamic operation is carried out by updating

nodes in the index tree. Note that the update

on index is merely based on document

identifies, and no access to the content of

documents is required. The specific process

is presented as follows: • {I′ s,ci} ←

GenUpdateInfo(SK,Ts,i,updtype)) This

INTERNATIONAL JOURNAL OF MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

IJMTARC – VOLUME – IV – ISSUE - 16 - DEC 2016 ISSN: 2320-1363

 14

algorithm generates the update information

{I′ s,ci} which will be sent to the cloud

server. In order to reduce the

communication overhead, the data owner

stores a copy of unencrypted index tree.

Here,thenotion updtype

∈{Ins,Del}denoteseither an insertion or a

deletion for the document fi. The notionTs

denotes the set consisting of the tree nodes

that need to be changed during the update.

For example, if we want to delete the

document f4 in Fig. 3, the subtree Ts

includes a set of nodes {r22,r11,r}. – If

updtype is equal to Del, the data owner

deletesfromthe subtreethe leaf node that

stores the document identity i and updates

the vector D of other nodes in subtreeTs, so

as to generate the updated subtree T′ s. In

particular, if the deletion of the leaf node

breaks the balance of the binary index tree,

we replace the deleted node with a fake node

whose vector is padded with 0 and file

identity is null. Then, the data owner

encrypts the vectors stored in the subtree T′

s with the key set SK to generate encrypted

subtree I′ s, and set the output ci as null. – If

updtype is equal to Ins, the data owner

generates a tree node u =

⟨GenID(),D,null,null,i⟩ for the document fi,

where D[j] = TFfi,wj for j = 1,...,m. Then,

the data owner inserts this new node into the

subtreeTs as a leaf node and updates the

vector D of other nodes in subtree Ts

according to the Formula (5), so as to

generate the new subtree T′ s. Here, the data

owner is always preferable to replace the

fake leaf nodes generated by Del operation

with newly inserted nodes, instead of

directly inserting new nodes.

Next,thedataownerencryptsthevectorsstored

in subtree T′ s with the key set SK as

described in Section 4.4, to generate

encrypted subtree I′ s. Finally, the document

fi is encrypted to ci. • {I′,C′} ←

Update(I,C,updtype,I′ s,ci) In this algorithm,

cloud server replaces the corresponding

subtree Is(the encrypted form of Ts) with I′

s, so as to generate a new index tree I′. If

updtype is equal to Ins, cloud server inserts

the encrypted document ci into C, obtaining

a new collection C′. If updtype is equal to

Del, cloud server deletes the encrypted

document ci from C to obtain the new

collection C′. Similar to the scheme in 31 ,

INTERNATIONAL JOURNAL OF MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

IJMTARC – VOLUME – IV – ISSUE - 16 - DEC 2016 ISSN: 2320-1363

 15

our scheme can also carry out the update

operation without storing the index

4.6 Parallel Execution of Search

Owing to the tree-based index structure, the

proposed search scheme can be executed in

parallel, which further improves the search

efficiency. For example, we assume there

are a set of processors P = {p1,...,pl}

available. Given a search request, an idle

processor pi is used to query the root r. If the

search could be continued on both the

children, and there is an idle processor pj,

the processor pi continues to deal with one

of the children while processor pj deals with

the other one. If there is no idle processor,

the current processor is used to deal with the

child with larger relevance score, and the

other child is put into a waiting queue. Once

there is an idle processor, it takes the oldest

node in the queue to continue the search.

Note that all the processors share the same

result list RList.

5 PERFORMANCEANALYSIS

 We implement the proposed scheme using

C++language in Windows 7 operation

system and test its efficiency on a real-world

document collection: the Request for

Comments (RFC) [39]. The test includes 1)

the search precision on different privacy

level, and 2) the efficiency of index

construction, trapdoor generation, search,

and update. Most of the experimental results

are obtained with anIntel Core(TM)Duo

Processor(2.93 GHz), except that the

efficiency of search is tested on a server with

two Intel(R) Xeon(R) CPU E5-2620

Processors (2.0 GHz), which has 12

processor cores and supports 24 parallel

threads.

5.1 Precision and Privacy

The search precision of scheme is affected

by the dummy keywords in EDMRS

scheme. Here, the ’precision’ is defined as

that in 26 : Pk = k′/k, where k′ is the

number of real top-k documents in the

retrieved k documents. If a smaller standard

deviation σ is set for the random document

collection with the fixed dictionary, m =

4000, and (b) for the different sizes of

dictionary with the fixed document

collection ,n = 1000.

INTERNATIONAL JOURNAL OF MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

IJMTARC – VOLUME – IV – ISSUE - 16 - DEC 2016 ISSN: 2320-1363

 16

5.2 Efficiency

5.2.1 Index Tree Construction

The process of index tree construction for

document collection F includes two main

steps: 1) building an unencrypted KBB tree

based on the document collection F, and 2)

encrypting the index tree with splitting

operation and two multiplications of a

(m×m) matrix. The index structure is

constructed following a post order traversal

of the tree based on the document collection

F, and O(n) nodes are generated during the

traversal. For each node, generation of an

index vector takes O(m) time, vector

splitting process takes O(m) time, and two

multiplications of a (m×m) matrix takes

O(m2) time. As a whole, the time

complexity for index tree construction is

O(nm2). Apparently, the time cost for

building index tree mainly depends on the

cardinality of document collection F and the

number of keywords in dictionary W. Fig. 5

shows that the time cost of index tree

construction is almost linear with the size of

document collection, and is proportional to

the number of keywords in the dictionary.

Due to the dimension extension, the index

tree construction of EDMRS scheme is

slightly more time-consuming than that of

BDMRS scheme. Although the index tree

construction consumes relatively much time

at the data owner side, it is noteworthy that

this is a one-time operation. On the other

hand, since the underlying balanced binary

tree has space complexity O(n) and every

node stores two m-dimensional vectors, the

space complexity of the index tree is O(nm).

As listed in Table 3, when the document

collection is fixed (n = 1000), the storage

consumption of the index tree is determined

by the size of the dictionary.

5.2.2 Trapdoor Generation

 The generation of a trapdoor incurs a vector

splitting operation and two multiplications

of a (m×m) matrix, thus the time complexity

is O(m2), as shown in Fig. 6(a). Typical

search requests usually consist of just a few

keywords. Fig. 6(b) shows that the number

of query keywords has little influence on the

overhead of trapdoor generation when the

dictionary size is fixed. Due to the

dimension extension.

INTERNATIONAL JOURNAL OF MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

IJMTARC – VOLUME – IV – ISSUE - 16 - DEC 2016 ISSN: 2320-1363

 17

5.2.3 Search Efficiency

During the search process, if the relevance

score at node u is larger than the minimum

relevance score in result list RList, the cloud

server examines the children of the node;

else it returns. Thus, lots of nodes are not

accessed during a real search. We denote the

number of leaf nodes that contain one or

more keywords in the query as θ. Generally,

θ is larger than the number of required

documents k, but far less than the cardinality

of the document collection n. As a balanced

binary tree, the height of the index is

maintained to be logn, and the complexity of

relevance score calculation is O(m). Thus,

the time complexity of search is O(θmlogn).

Note that the real search time is less than

θmlogn. It is because 1) many leaf nodes

that contain the queried keywords are not

visited according to our search algorithm,

and 2) the accessing paths of some different

leaf nodes share the mutual traversed parts.

In addition, the parallel execution of search

process can increase the efficiency a lot.

5.2.4 Update Efficiency

 In order to update a leaf node, the data

owner needs to update logn nodes. Since it

involves an encryption operation for index

vector at each node, which takes O(m2)

time, the time complexity of update

operation is thus O(m2 logn). We illustrate

the time cost for the

6 CONCLUSION AND FUTURE WORK

 In this paper, a secure, efficient and

dynamic search scheme is proposed, which

supports not only the accurate multi-

keyword ranked search but also the dynamic

deletion and insertion of documents. We

construct a special keyword balanced binary

tree as the index, and propose a “Greedy

Depth-first Search” algorithm to obtain

better efficiency than linear search. In

addition, the parallel search process can be

carried out to further reduce the time cost.

The security of the scheme is protected

against two threat models by using the

secure kNN algorithm. Experimental results

demonstrate the efficiency of our proposed

scheme. There are still many challenge

problems in symmetric SE schemes. In the

INTERNATIONAL JOURNAL OF MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

IJMTARC – VOLUME – IV – ISSUE - 16 - DEC 2016 ISSN: 2320-1363

 18

proposed scheme, the data owner is

responsible for generating updating

information and sending them to the cloud

server. Thus, the data owner needs to store

the unencrypted index tree and the

information that are necessary to recalculate

the IDF values. Such an active data owner

may not be very suitable for the cloud

computing model. It could be a meaningful

but difficult future work to design a dynamic

searchable encryption scheme whose

updating operation can be completed by

cloud server only, meanwhile reserving the

ability to support multi-keyword ranked

search. In addition, as the most of works

about searchable encryption ,our scheme

mainly considers the challenge from the

cloud server. Actually, there are many

secure challenges in a multi-user scheme.

Firstly, all the users usually keep the same

secure key for trapdoor generation in a

symmetric SE scheme. In this case, the

revocation of the user is big challenge. If it

is needed to revoke a user in this scheme, we

need to rebuild the index and distribute the

new securekeys toall the authorizedusers.

Secondly, symmetric SE schemes usually

assume that all the data users are

trustworthy. It is not practical and a

dishonest data user will lead to many secure

problems. For example, a dishonest data

user may search the documents and

distribute the decrypted documents to the

unauthorized ones. Even more, a dishonest

data user may distribute his/her secure keys

to the unauthorized ones. In the future

works, we will try to improve the SE

scheme to handle these challenge problems.

REFERENCES

[1]

K.Ren,C.Wang,Q.Wangetal.,“Securitychalle

ngesforthepublic cloud,” IEEE Internet

Computing, vol. 16, no. 1, pp. 69–73, 2012.

[2] S. Kamara and K. Lauter,

“Cryptographic cloud storage,” in Financial

Cryptography and Data Security. Springer,

2010, pp. 136– 149.

[3] C. Gentry, “A fully homomorphic

encryption scheme,” Ph.D. dissertation,

Stanford University, 2009.

INTERNATIONAL JOURNAL OF MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

IJMTARC – VOLUME – IV – ISSUE - 16 - DEC 2016 ISSN: 2320-1363

 19

 [4] O. Goldreich and R. Ostrovsky,

“Software protection and simulation on

oblivious rams,” Journal of the ACM

(JACM), vol. 43, no. 3, pp. 431–473, 1996.

[5] D. Boneh, G. Di Crescenzo, R.

Ostrovsky, and G. Persiano, “Public key

encryption with keyword search,” in

Advances in CryptologyEurocrypt 2004.

Springer, 2004, pp. 506–522.

 [6] D. Boneh, E. Kushilevitz, R. Ostrovsky,

and W. E. Skeith III, “Public key encryption

that allows pir queries,” in Advances in

Cryptology-CRYPTO 2007. Springer, 2007,

pp. 50–67.

[7] D. X. Song, D. Wagner, and A. Perrig,

“Practical techniques for searches on

encrypted data,” in Security and Privacy,

2000. S&P 2000. Proceedings. 2000 IEEE

Symposium on. IEEE, 2000, pp. 44– 55.

 [8] E.-J. Goh et al., “Secure indexes.” IACR

Cryptology ePrint Archive, vol. 2003, p.

216, 2003.

[9] Y.-C. Chang and M. Mitzenmacher,

“Privacy preserving keyword searches on

remote encrypted data,” in Proceedings of

the Third international conference on

Applied Cryptography and Network

Security. Springer-Verlag, 2005, pp. 442–

455. [10] R. Curtmola, J. Garay, S. Kamara,

and R. Ostrovsky, “Searchable symmetric

encryption: improved definitions and

efficient constructions,” in Proceedings of

the 13th ACM conference on Computer and

communications security. ACM, 2006, pp.

79–88.

 [11] J. Li, Q. Wang, C. Wang, N. Cao, K.

Ren, and W. Lou, “Fuzzy keyword search

over encrypted data in cloud computing,” in

INFOCOM, 2010 Proceedings IEEE. IEEE,

2010, pp. 1–5.

 [12] M. Kuzu, M. S. Islam, and M.

Kantarcioglu, “Efficient similarity search

over encrypted data,” in Data Engineering

(ICDE), 2012 IEEE 28th International

Conference on. IEEE, 2012, pp. 1156–1167.

[13] C. Wang, K. Ren, S. Yu, and K. M. R.

Urs, “Achieving usable and privacy-assured

similarity search over outsourced cloud

data,” in INFOCOM, 2012 Proceedings

IEEE. IEEE, 2012, pp. 451–459.

INTERNATIONAL JOURNAL OF MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

IJMTARC – VOLUME – IV – ISSUE - 16 - DEC 2016 ISSN: 2320-1363

 20

Author’s Details

Mr.N.Maneiah received M.Tech(CSE) Degree

from School of Information Technology,

Autonomous, and Affiliated to JNTUA,

Anthapur. He is currently working as Assistant

Professor in the Department of Computer

Science and Engineering in Modugula

Kalavathamma Institute of Technology for

Women, Rajampet, Kadapa,AP India. His

interests include Object Oriented Programming,

Operating System, Database Management

System, Computer Networking, Cloud

Computing and Software Quality Assurance.

Ms.C.ANUSHA She is currently pursuing

M.tech Degree in Computer Science and

Engineering specialization in Modugula

Kalavathamma Institute of Technology for

Women, Rajampet, Kadapa,AP

